The aim of this study was to improve the survival and local control of patients with primary or recurrent rectal cancer treated by combined external photon and intracavitary neutron radiation therapy. Analysis of this group of patients was undertaken to assess the survival, local control and complication rate in comparison with external photon therapy alone.

Materials and methods. Fifty-six patients (Co–Cf group) with rectal malignancies (T2–7 pts, T3–33 pts, T4–7 pts, 1 with melanoma and 8 with rectal carcinoma recurrence) were treated by combined radiation therapy: external 60Co gamma irradiation (2 Gy per fraction, 3–5 fractions/week, mean total dose 37.2 Gy) and 252Cf neutron high dose rate (HDR) remote afterloading brachytherapy (0.7–2.1 Gy per fraction, 2 fractions/week, mean total dose 5.4 Gy). This group was compared with historical Co group of 52 patients (T1 – 1 pt, T2 – 12 pts, T3 – 39 pts, T4 – 2 pts; 8 with rectal carcinoma recurrence) treated by external photon irradiation therapy (2 Gy per fraction, 5 fractions/week, mean total dose 62.6 Gy). The follow-up for these patients ranged from 7.5 to 12.5 years.

Results. Complete response was achieved in 19.2% and partial response in 59.6% of the cases among Co-Cf group patients. The mean total brachytherapy dose for patients with NR was less than 4.0 Gy. Acute reactions (Grade 2–4 RTOG) and late complications (Grade 2–4 RTOG) in the rectum and adjacent tissues after a 4 year follow-up were observed in 21.4% (12/56) versus 30.0% and 16.0% (8/50) versus 29.0% cases in the Co–Cf and Co groups, respectively. The one-, two-, three-, four-, five- and six-year survival was 80.4%, 53.6%, 42.7%, 25.6%, 17.7%, 11.8% versus 71.6%, 41.8%, 20.9%, 10.5%, 3.0%, 1.5% for the Co-Cf and Co groups of patients respectively (a statistically significant difference of survival from one to six years).

Conclusions. The results achieved by the use of 252Cf neutron brachytherapy are encouraging to improve the treatment results in selected groups of patients with locally spread primary or recurrent rectal cancer.

Key words: rectal cancer, neutron therapy, external photon therapy, Californium-252
However, there is a subset of patients who are unable to undergo surgery for different reasons. In Lithuania, in the nineties of the last century, the majority of these patients received external photon therapy with or without chemotherapy. Unfortunately, the curative photon radiation therapy has a limited benefit, because rectal adenocarcinoma is radioresistant (8), while the adjacent tissues and organs are relatively radiosensitive.

Since late 1988, combined radiation therapy (external 60Co photon radiation plus intracavitary 252Cf neutron brachytherapy) was applied for rectal carcinoma patients unable to undergo surgery at the Lithuanian Oncology Center, seeking to prolong their survival in comparison with external photon radiation therapy.

**MATERIALS AND METHODS**

One hundred and eight patients with primary or recurrent rectum carcinoma were treated with
curative intent by radiation therapy: 56 patients of the Co–Cf group (1988–1993) received external 60Co gamma radiation and 252Cf neutron brachytherapy and 52 patients from the Co group (1985–1990) were treated by external 60Co gamma radiation therapy. Patient, treatment and tumour characteristics are presented in Tables 2 and 3, respectively.

Fifty-three patients from the Co–Cf group received external gamma irradiation during this session, three patients with recurrences had received radiotherapy (58 Gy, 40 Gy, 60 Gy) more than 2 years ago and were irradiated only with 252Cf brachytherapy. In most cases external gamma therapy alone (two-field technique – PA and AP 12–13 × 16–17 cm) was completed after 25–30 Gy and continued until 40 Gy with 252Cf brachytherapy added.

252Cf brachytherapy was performed by neutron remote after A NET-V (Russia) loaded with a 252Cf source (active length 1 cm). The californium-252 content was 0.5 mg each in two lateral channels and 1.7 mg in the central channel. The irradiation procedure is based on sending the 252Cf source remotely controlled into the central applicator inserted in the rectum, moving step by step from one position to another according to a calculated programme, after which the source automatically returns to the storage at the end of the irradiation programme. The dose point (100% isodose) was 1.5 cm from the central axis of the 252Cf source movement trajectory (or at a depth of 5 mm from the surface of rectum mucosa), and the 50% isodose was observed at a distance of 2.5 cm from the central axis. As a rule, the length of the intracavitary volume was extended 2 cm to both sides of the gross tumour.

Topometrical investigations were performed by the use of AP and lateral radiographs or xerorontgenograms with a rectostat and dummy sources inserted into the rectum. A special computer programme was employed for the dosimetric and radiobiological planning procedure according to the principles presented elsewhere (9), (10).

The Co group was treated by a two-three-field technique (one PA) plus rotation in the prone position (angle 240°). Three patients with anal carcinoma were irradiated by two AP–PA fields and a perineum field.

Consequently, in most cases the external and internal iliac lymphnodes, presacral tissues received a dose of at least 40 Gy.

All patients have been followed from the start of radiotherapy until death or the study closing data (2001). Only acute reactions (RTOG Grade 2–4) and late complications (Grade 2–4) in the rectum and adjacent tissues could be scored.

The calculation of probabilities of survival and comparison of survival curves, the statistical analysis system (SAS) or SPSS, survival analysis, life table method and log-rank, Wilcoxon, chi-square tests were used.

RESULTS

All patients from the Co–Cf group received combined radiotherapy without long interruptions associated with severe acute pelvic morbidity; some patients had a planned gap of 2–3 weeks. Slight acute reactions related with rectal discomfort, increased frequency or change in the quality of bowel habits or frequency of urination usually were observed after a 3.6–4.4 Gy neutron brachytherapy dose. Application of dimethylsulfoxide, meathyluracil and hormone enema was very effective to avoid progression of symptoms.

One month after completion of radiotherapy, local tumour response was estimated among patients in the Co–Cf group: complete response (CR) was achieved in 10 pts (17.9%), partial response (PR) in 30 pts (53.6%), no response (NR) in 11 pts (19.6%) and 5 pts were not qualified.

The 1-, 2-, 3-, 4-, 5-, 6-year survival was 80.4%, 53.6%, 42.7%, 25.6%, 17.7%, 11.8% and 71.6%, 41.8%, 20.9%, 10.5%, 3.0%, 1.5% for the Co–Cf and Co groups, respectively (Fig. 1). The log-rank test showed a significant difference in survival bet-
ween the two groups (p = 0.010). The median survival time was 27.9 months and 20.6 months for Co–Cf and Co groups, respectively.

Acute bowel reactions (Grade 2–4 using the RTOG scoring system) were assessed throughout the trial. They were observed in 12 (21.7%) cases within 3 months after the completion of radiotherapy: acute rectitis in four and acute enterocolitis in eight cases. The mean total $^{252}$Cf brachytherapy dose for patients with acute rectitis was 6.6 Gy.

Late complications were assessed as those arising more than 3 months from completion of radiotherapy with Grade 2–4 morbidity in the RTOG scoring system. In 8 cases out of 50 (16.0%), late bowel toxicity was ascertained: chronic rectitis in 5 pts, enterocolitis in 1 pt, rectum stenosis and chronic ulcer – 1 case of each. The rate of late complications according to californium brachytherapy dose (plus 37.2 Gy from EBRT) showed the 46.26 ± 13.73 iGy dose for probability of late complications in 50% of cases (Fig. 2). These late complications were treated by conservative (6 pts) or surgical (2 pts) procedures.

The 50% probability for acute complications in this group was found to be 60.16 ± 19.32 iGy (Fig. 3).

In 30.0% of the cases acute reactions were observed and late complications in 29.0% of patients from the Co group.

**DISCUSSION**

Acute and late morbidity are the most important dose-limiting factors in the radiotherapy of rectal carcinoma. Quantitative rectum morbidity in most cases was estimated after external fast neutron radiation therapy and it was reported excellent acute gastrointestinal tolerance of external fast neutrons (15 MeV) in patients irradiated for pelvic malignancies, but late bowel morbidity was higher than could be expected. Duncan et al. [5] analysed the results of randomized treatment of 133 patients with bladder cancer by neutron or photon therapy and concluded that late bowel reactions were significantly worse after neutrons: a neutron dose of 15.2 Gy was estimated as a cause for late complication incidence in 50% of the cases. The RBE values for acute and late rectosigmoidal toxicity were 3.4 and 3.8, respectively. Many other authors (11) who used external fast neutron irradiation in the pelvic region of experimental animals, ascertained more severe late bowel reactions. These data allow to conclude that late gastrointestinal morbidity is the main dose-limiting factor for external fast neutron therapy.

Our data show that the occurrence of serious acute and late reactions caused by combined external $^{60}$Co gamma and intracavitary $^{252}$Cf neutron radiation therapy was much less in comparison with external fast neutron treatment and was at the same level as observed in patients who received curative external $^{60}$Co photon therapy. These results correspond to the results obtained by Maruyama et al. (12) who observed...
significantly less complications in the pelvis after curative irradiation of cervix uteri carcinoma with $^{252}$Cf brachytherapy. These authors suggested that combining external photon therapy with $^{252}$Cf neutron brachytherapy would even lead to a better tolerance in normal tissues and consequently to fewer side-effects and complications. External photon therapy is effective for irradiating large volumes of tissue and can reduce and control minimal or micrometastatic regional diseases. The results support the suggestion that a multimodality type of treatment is one of the best approaches for improvement of cancer treatment. In addition, they confirm the ideas about the advantages of brachytherapy for the results of local treatment.

Local tumour response after radiation therapy might be an important prognostic factor for survival, which depends on the total dose. According to Cox proportional hazard modeling, survival differences between the CR + PR and NR groups should be analysed only for a period of more than 1.5 years, as a significant survival difference between patients with CR + PR and NR starting from a period of 2 years and more (log-rank test $p = 0.0195$; Wilcoxon (Breslow) test $p = 0.0673$) (Fig. 4) was found. The absence of a strong difference during the first 1.5 years might be caused by the small number of patients, short period of survival and difficulties in estimation of local tumour response after a high radiation dose in the rectum. Interestingly, rectal tumour with NR received a neutron brachytherapy dose less than 4 Gy. On the other hand, there were four patients with acute rectitis and a mean neutron brachytherapy dose of 6.6 Gy. These results suggest an optimal $^{252}$Cf neutron brachytherapy dose, tolerable for the rectum or adjacent tissues and effective for tumour control.

The survival rate in the Co–Cf group was less than that reported in (5) and higher than in the series of patients treated with radiotherapy alone at Princess Margaret Hospital with a median survival rate of 14 months and a 5-year survival rate in 5% (13). The survival for the subset of patients with total doses > 50 Gy was comparable (median survival 24 months and 5-year survival 13%) with our results. The other series report similar survival results: 14% at 3 years (14), 31% at 2 years (15).

Although this study was carried out as a non-randomised trial and consequently there was a lot of heterogeneity in tumour characteristics of the patients that included a high proportion of advanced tumours (T3 + T4 83.3%, 8 with recurrences) and older patients (> 75yr 44.6%), the results are satisfactory: the survival in the Co–Cf group was significantly (log-rank test $p = 0.010$) better in comparison with the Co group. We therefore agree that the benefit from multidisciplinary approach is only possible if an accurate selection of candidates with “favorable factors” is performed.

On the other hand, Keane and Thomas (16) pointed out that non-experimental clinical data analysis contributes to hypothesis generation and stimulates new ideas which require to be properly tested in the experimental setting of prospective randomised clinical studies.

Analysis of death causes in the Co–Cf group shows that in 58.6% of patients if was tumour progression. One of the explanations for this feature was the low local $^{252}$Cf neutron brachytherapy dose (5.18 Gy) compared to a dose of 5.6 Gy in patients who died without tumour progression. The number of deaths from distant metastases is small (8.9%, 5/56) and less than reported by other authors.

Eight patients with rectal recurrences received combined gamma and intracavitary $^{252}$Cf neutron radiation therapy, and the survival rate for this group was: 1 years – 88.8%, 2 years – 80%, 3 years – 60%, 4 years – 40%, which was high in this poor prognosis group in comparison with other data (9, 10).

**CONCLUSIONS**

Combined external $^{60}$Co gamma and intracavitary $^{252}$Cf neutron radiation therapy was effective in the treatment of locally advanced rectal cancer in comparison to external beam photon radiation therapy alone.

Doses of 37.2 Gy by external gamma irradiation and 5.4 Gy by neutron brachytherapy result in a sa-

![Kaplan-Meier survival estimates, by response](image-url)
satisfactory survival (5 years - 17.7%) and acute (21.4%) or late (16.0%) radiation complication rate.

The achieved results are encouraging and might lead to a further improvement of treatment results for the subset of rectal cancer patients unable to undergo surgery through optimisation of neutron brachytherapy regimens.

Received 2 March 2005
Accepted 15 March 2005

References