Influence of Zinc on Relaxation of Smooth Muscles and Ultrastructure of Cardiomyocytes Under Immobilization Stress

Marija Kušleikaitė*, Algimantas Kirkutis¹, Artūras Razbadauskas¹, Ona Rugevičienė¹, Saulius Kušleika
Institute of Cardiology, Kaunas Medical University, Sukilėlių 17, LT-3007 Kaunas, Lithuania
¹ Faculty of Health Sciences, Klaipėda University, H. Manto 84, LT-5800 Klaipėda, Lithuania

The aim of the study was to investigate the significance of zinc (as antiatherogenic factor) for the relaxation of smooth muscles and the ultrastructure of cardiomyocytes under immobilization stress (as a factor of ischemic heart disease). A 48-d stress was provoked in Chinchilla rabbits (n = 20) by placing them in metal hutches. Half (n = 10) of the rabbits received daily oral zinc supplementation as zinc acetate at a dose of 0.3 mg/kg body wt. The control rabbits (n = 10) had no intervention and received no supplements. The relaxation of smooth muscles from thoracic aorta as mediated by acetylcholine at a concentration from 10 –8 to 10–4 mol/l was detected using a 6MXIC mechanotron in isometric regime. The response was expressed as the percentage of relaxation to prostaglandin F₂α (2.10 –5 mol/l)-induced precontraction. The ultrastructure of the cardiomyocytes was evaluated by electron microscopy (Philips-300). The data showed that immobilization stress decreased the relaxation of smooth muscles and damaged cardiomyocyte ultrastructure as manifested by caryopyknosis, caryorrhexis, desintegration of myofibrils, vacuolization of mitochondria and endoplasmic reticulum. Zinc supplementation in the food of rabbits under immobilization stress increased the relaxation of smooth muscles, caused hypercontraction of myofibrils, accumulation of mitochondria with dense cristae and single lysosomes in cardiomyocytes.

Key words: immobilization stress, zinc, muscles, relaxation, cardiomyocytes

INTRODUCTION

A stressogenic situation such as conflict at home, at work, ecological catastrophe, hypodynamics, etc. may cause the dysfunction of central nervous system (CNS). There is no doubt that dysfunction of CNS is important for the pathogenesis of ischemic heart disease (IHD) which is related to disorders of coronary blood circulation. This in turn depends on the contractility of smooth muscles, which is controlled by vasoactive agents (such as nitric oxide, prostacyclin, thromboxane, endothelin, etc.) synthesized and released by the vascular endothelium (1, 2) and may determine functional and ultrastructural disturbances in cardiomyocytes. The literature data indicate (3, 4) that antioxidants, scavengers of free radicals positively act on the relaxation of blood vessels in patients with IHD. Zinc, as a critical component of biomembranes as well as activator or inhibitor of numerous enzymes, protecting cells from oxidative stress (5, 6), attending in the mechanism of apoptosis (7, 8), providing antiatherogenic properties (9, 10) may be significant for maintaining the ultrastructure of cells in tissues and for contractility of smooth muscles. In addition, functional analysis using vessel segments from aorta or coronary artery revealed that, similarly to the human situation, these conductance vessels develop a nitric oxide (NO)-dependent endothelial dysfunction (11). Risk factors of ischemic heart disease such as arterial hypertension, hypercholesterolemia, smoking and others are related to endothelium-dependent relaxation as much in coronary artery as in peripheral artery (3, 4, 12). All this allows us to detect the reactivity of coronary artery in a non-invasive way or, as in our experiment, definite changes in the relaxation of thoracic aorta permit to associate changes in the coronary arteries with relaxation.

Thus, the aim of our investigation was to determine the significance of zinc for relaxation of blood...
Influence of Zinc on Relaxation of Smooth Muscles and Ultrastructure of Cardiomyocytes Under Conditions of Immobilization Stress (as an IHD Factor).

MATERIALS AND METHODS

Induction of immobilization stress

The animals were cared, used and killed according to the defined code given by the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (License No. 0006).

A 48-d immobilization stress was provoked according to B. M. Fiodorov (13) in male Chinchilla rabbits (weight 2.5–3.0 kg; n = 20) by placing them in metal hutches, which closely shrouded their body, but rabbits could loosely feed and drink. Every day (48 days) 10 rabbits that lived in metal hutches received oral zinc doses of 0.3 mg/kg body wt (in the form of zinc acetate). The remaining rabbits did not receive zinc supplement and were placed in metal hutches for 48 days. The control rabbits (n = 10), which had no intervention and received no zinc supplement, were kept in vivarium conditions.

All the rabbits used in the experiment received the same food, which was not purified in respect to trace elements. For production of zinc supplement a solution of zinc acetate was used, in which 1 ml of solution contained 1 mg of zinc. The solution was used with respect to body weight of rabbits, a dose of zinc 0.3 mg/kg was dropped with an automatic pipette into one of the food components (in a dough-ball, 8 g weight, made of barley meal). Such dough-balls were given to a half (n = 10) of rabbits (who had an intervention) every day starting from the second day of immobilization.

Vascular studies

Following the immobilization regime (after 48 days) the rabbits were anesthesized using thiopental-sodium (35 mg/kg). On opening the thoracic chest of rabbits, samples of thoracic aorta were taken to test the relaxation of smooth muscles. Isolated preparations of thoracic aorta of experimental and control rabbits for testing the relaxation of smooth muscles were perfused with an oxygenated Ringer solution containing (in mmol/l): NaCl – 139; KCl – 3.5; CaCl₂ – 2.5; NaH₂PO₄ – 2.4; MgCl₂ – 1.7; NaH₂PO₄ – 0.67; NaHCO₃ – 1.5; glucose – 5; ph 7.2–7.4 at 37.5 °C. To elucidate the influence of acetylcholine-mediated relaxing effect of endothelium upon the preparation of thoracic aorta smooth muscles, the latter were precontracted with prostaglandin F₂α (2.10⁻⁵ mol/l). The relaxation of smooth muscles (precontracted with prostaglandin) mediated by acetylcholine at a concentration from 10⁻⁸ mol/l to 10⁻⁴ mol/l was determined with the aid of a 6M XIC mechanotron in isometric regime. Responses were expressed as the percentage of relaxation to prostaglandin F₂α-induced precontraction. The solution of the biologically active substance (acetylcholine and prostaglandin F₂α) was prepared ex tempore.

Ultrastructural studies

For ultrastructural studies of cardiomyocytes, samples of the left ventricle of the heart were immersed into a fixative solution containing 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 mmol/l cacodylate buffer (ph 7.4) for more than 4 h at room temperature or overnight at 4 °C. The specimens were then postfixed for 2 h with 1% osmium tetroxide solution in 0.1 mmol/l cacodylate buffer (pH 7.4) dehydrated through a graded ethanol series and embedded in a mixture of Epon 812 and Araldit. Ultrathin sections stained with uranyl acetate and lead citrate were evaluated by electron microscopy (Philips-300).

Statistical analysis

Values are presented as mean ± SEM. Data derived from repeated measurements were analyzed by a two-way ANOVA. Otherwise data were compared with Student's t test. Differences were considered to be significant at P < 0.05.

RESULTS

Smooth muscle relaxation as affected by acetylcholine in rabbits not receiving or receiving zinc supplementation under immobilization stress

The present data show that a long-term immobilization stress (lasting 48 days) caused a disorder of the relaxation of smooth muscles (Fig. 1). For example, in rabbits that received no zinc under immobilization stress (Fig. 1, c), the relaxation of smooth muscles (after precontraction with prostaglandin F₂α (2.10⁻⁵ mol/l)) of thoracic aorta under the influence of acetylcholine at the concentration from 10⁻⁸ to 10⁻⁴ mol/l was significantly lower (p < 0.05–0.01) than in rabbits given zinc (Fig. 1, b). Besides, in rabbits that received no zinc (Fig. 1, c) supplement during immobilization stress, the relaxation of smooth muscles (after precontraction with prostaglandin F₂α (2.10⁻⁵ mol/l)) of thoracic aorta under the influence of acetylcholine at a concentration from 10⁻⁸ to 10⁻⁴ mol/l was significantly lower (p < 0.05–0.01) than in control rabbits (Fig. 1, a) at any of 10⁻⁶ mol/l, 10⁻⁵ mol/l, 10⁻⁴ mol/l acetylcholine concentration. On the other hand, in rabbits given a zinc supplement (Fig. 1, b) under immobilization stress the contractility of smooth muscles affected by acetylcholine did not
change as compared to that of control rabbits (Fig. 1, a).

**Morphological changes in cardiomyocytes induced by immobilization stress without and with zinc supplementation**

In the cardiomyocytes of rabbits receiving no zinc supplement during immobilization stress the following structural changes were observed: caryopyknosis, caryorrhexis, desintegration of myofibrils, vacuolization of mitochondria and endoplasmic reticulum (Fig. 2). In cardiomyocytes of rabbits that received zinc in the course of the 48-d immobilization stress, hypercontraction of myofibrils, accumulation of mitochondria with dense cristae and single lysosomes were visible (Fig. 3). Figure 4 shows the cardiomyocyte morphology in control rabbits.

**DISCUSSION**

The favourable effects of zinc on the relaxation of smooth muscles and on the ultrastructure of cardiomyocytes may be manifested directly or indirectly via many mechanisms. One of the indirect mechanisms may be related to the synthesis and release of the vasodilator, nitrous oxide (NO), in the endothelium. By activating glucose 6-phosphatase dehydrogenase (14) zinc takes part in the synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is required for the catalyzing function of NO synthetase (15). Besides, zinc prolongs the half-life of NO as a cofactor of superoxide dismutase and inhibits the production of peroxynitrite (produced from an interaction of NO with
Zinc lowers the tone of smooth muscles in the thoracic aorta and protects the ultrastructure of the cardiomyocyte under immobilization stress.

Received 29 October 2003
Accepted 28 November 2003

CONCLUSIONS

Zinc lowers the tone of smooth muscles in the thoracic aorta and protects the ultrastructure of the cardiomyocyte under immobilization stress.

References

Zn POVEIKIS KRŪTINĖS AORTOS LYGIŲJŲ RAUMENŲ ATSIPALAIDAVIMUI IR KARDIOMIOCITŲ ULTRASTRUKTŪRAI IMOBILIZACIJOS STRESO ATVEJU

Santrauka

Norėdami ėvertinti Zn poveiką krūtinės aortos lygiųjų raumenų relaksacijai ir kardiomiocitų ultrastrukturai streso atveju, šimtai veislės triušių (iš viso 20) sukėlėme 48 parų streso juos imobilizuodami metalinius narvelius. Dėl imobilizuotų triušių papildomai maitinome 0,3 mg/kg Zn (Zn acetato forma). Kontroliniai triušiai, kuriai buvo laikomi be intervencijos vardiniais sąlygomis, lygiųjų raumenų relaksacine funkciją tyrėme mikromechanotronu, veikdami krūtinės aortos segmentus didėjančiomis acetilcholinio koncentracijomis ($10^{-8}$–$10^{-4}$ mol/l) prieš tai sukėlusi segmentuose pastovų susitraukimą prostaiglandinui $F_2\alpha$ (2,10$^{-5}$ mol/l). Kardiomiocitų ultrastruktūrinius pokyčius vertinome elektroniniu mikroskopu „Philips-300“. Gauti duomenys rodo, jog veikiant acetilcholinu, triušiai, negavusi Zn, lygiųjų raumenų atsipalaidavimas buvo reikšmingai sumažėjęs lyginant su kontroliniais ir Zn gavusiais triušiais. Be to, 48 parų imobilizacija nulėmė kardiomiocitų miofibriuos liges visiškai įšėmė, mitochondrijų ir endoplazminio tinklo vakuolizaciją, mitochondrijų kristų fragmentaciją, homogenizaciją, branduolių piknozę, karioreksę. Tuo tarpu Zn gavusių triušių 48 parų imobilizacijos streso metu kardiomiocitų ultrastruktūrinių pokyčių buvo ne tokie ryškūs ir siejosi su jų hiperfunkcija, t. y. miofibrių hiperkontrakcija, mitochondrijų kristų pagausėjimu.

Raktapodžiai: imobilizacijos stresas, Zn, raumenys, relaksacija, kardiomiocitai