Role of intracellular accumulation in the prooxidant cytotoxicity of daunorubicin

A. Nemeikaitë-Èënienë, E. Sergiedienë, J. Aèaitë, N. Èënas*

1 Institute of Immunology of Vilnius University, Molëtø pl. 29, LT -2021, Vilnius, Lithuania
2 Institute of Biochemistry, Mokslininkø 12, LT-2600, Vilnius, Lithuania

Oxidative stress partly contributes to the cytotoxicity of the anticancer anthracycline daunorubicin in FLK and HL-60 cells. However, daunorubicin is 100-300 times more cytotoxic than the model quinone danthron possessing a similar reduction potential. This discrepancy may be explained by the high cell/medium partition coefficient of daunorubicin, 570 ± 40 (HL-60 cells) and 230 ± 30 (FLK cells) calculated using the fluorescence quenching method. The cell/medium partition coefficient for danthron is below 10.

Key words: daunorubicin, intracellular accumulation, cytotoxicity, oxidative stress

INTRODUCTION

Daunorubicin (Figure) and the related anthracycline quinones are widely used in cancer treatment [1, 2]. DNA intercalation and topoisomerase inhibition are the universally accepted mechanisms of anthracycline cytotoxicity. However, the role of another mechanism, the oxidative stress resulting from enzymatic free radical formation and redox cycling of anthracyclines, is a subject of controversy ([2, 3], and references therein). Antioxidants partly protect from daunorubicin toxicity in HL-60 human promyelocytic leukemia cells [3], thus pointing to the involvement of oxidative stress. Another indicator of oxidative stress is an increase in quinone cytotoxicity with an increase in their single-electron reduction potential, E^1 [3–6]. However, daunorubicin was much more cytotoxic than one may expect from its E^1 value, –0.34 V [3]. In this paper, using HL-60 cells and bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK), we demonstrate that an enhanced cytotoxicity of daunorubicin, partly realated to the prooxidant events, may be explained by its high intracellular accumulation.

MATERIALS AND METHODS

Daunorubicin (Minmedprom, Russia), 1,8-dihydroxyanthraquinone (danthron), 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), desferrioxamine, and N,N'-diphenyl-p-phenylene diamine (DPPD) (Sigma) were used as received. HL-60 and FLK cells, obtained from the former All Union Bank of Cell Cultures (St. Petersburg), were grown and maintained in RPMI-1640 or Eagle’s media, respectively, with 10% fetal bovine serum at 37 °C [5]. In the cytotoxicity experiments, cells (3.0 × 10^4/ml, FLK, or 3.0 × 10^5/ml, HL-60) were grown in the presence of compounds for 24 h and counted using a hematocytometer with viability determined by exclusion of Trypan blue. Before the count, FLK cells were trypsinized. The accumulation of daunorubicin and danthron by HL-60 cells and by trypsinized FLK cells was examined fluorimetrically [7] in Hank’s medium with 10 mM glucose at 37 °C, using a Hitachi MPF-4 spectrofluorimeter. The emission wavelength was 560 nm, the excitation wavelengths were 480 nm.
RESULTS AND DISCUSSION

The daunorubicin concentrations for 50% cell survival (Cl_{50}) determined in this work were equal to 1.47 ± 0.22 µM (FLK) and 0.38 ± 0.07 µM (HL-60). They were 100–300 times lower than Cl_{50} of a model anthraquinone danthron (Figure), 120 ± 15 µM (FLK) and 150 ± 15 µM (HL-60), whose single-electron reduction potential, −0.325 V, is close to E^1 of daunorubicin [5]. Daunorubicin cytotoxicity in FLK cells was partly prevented by the antioxidant DPPD and the iron ion chelator desferrioxamine, and potentiated by BCNU which depletes intracellular reduced glutathione [5, 6] (Table). Analogous effects were characteristic of the cytotoxicity of danthron (Table). Cell viability in control experiments was 97 ± 2%. DPPD, desferrioxamine, and BCNU decreased cell viability by 1–3%. These data are in line with the previously reported protective effects of antioxidants towards daunorubicin cytotoxicity in HL-60 cells [3], thus showing that daunorubicin exerts a prooxidant effect on both cell lines investigated.

A significant accumulation of anthracyclines in various cell types has been reported [7, 9, 10], although not expressed in quantitative terms. The intracellular accumulation of anthracyclines and other fluorescent quinones may be monitored by their time-dependent fluorescence quenching in a cell suspension ([17], and references therein). In our typical experiment, the fluorescence intensity of 5 µM daunorubicin in the presence of 10^7/ml HL-60 cells decreased by 20% after 50 min without reaching the steady-state level. The subsequent addition of 0.02% Triton X-100, which causes cell permeabilization [7], decreased the fluorescence by 80% in 2 min. An analogous slow daunorubicin fluorescence quenching and fluorescence drop after addition of Triton X-100 was also characteristic of FLK cells. The cell/medium partition coefficients (see equation) were calculated from the final levels of 2–10 µM daunorubicin fluorescence in the presence of Triton X-100 and 0.5–1.0 × 10^7/ml HL-60 cells in their suspension, (P < 0.05 according to Student’s t test).

Table. Effects of 2 µM DPPD, 300 µM desferrioxamine and 20 µM BCNU in the 24 h cytotoxicity of 2.2 µM daunorubicin and 100 µM 1,8-dihydroxyanthraquinone (danthron) in FLK cells

<table>
<thead>
<tr>
<th>Additions</th>
<th>Viable cells (%)^a</th>
<th>a) daunorubicin</th>
<th>b) danthron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>36 ± 3</td>
<td>56 ± 2</td>
<td></td>
</tr>
<tr>
<td>Compound + DPPD</td>
<td>56 ± 2</td>
<td>82 ± 3</td>
<td></td>
</tr>
<tr>
<td>Compound + desferrioxamine</td>
<td>48 ± 3</td>
<td>87 ± 3</td>
<td></td>
</tr>
<tr>
<td>Compound + DPPD + desferrioxamine</td>
<td>58 ± 3</td>
<td>92 ± 3</td>
<td></td>
</tr>
<tr>
<td>Compound + BCNU</td>
<td>27 ± 2</td>
<td>35 ± 2</td>
<td></td>
</tr>
</tbody>
</table>

^a The results as the mean ± standard deviation of 3–4 independent experiments. For 2–5 against 1, the differences are statistically significant with P < 0.05 according to Student’s t test.
accumulation of daunorubicin and danthron, the above mechanism may also contribute to their different cytotoxicity.

Received 19 January 2004
Accepted 17 November 2004

References

A. Nemeikaitë-Èenienë, E. Sergiedienë, J. Aèaitë, N. Èenas

VIDULÄSTELINËS AKUMULIACIJOS VAIDMUO PROOKSIDANTINIAM DAUNORUBICINO CITOTOKSIDKUMUI

Santrauka
Oksidacinis stresas – prieðnavikinio antraciklino daunorubicino citotoksino poveikio FLK ir HL-60 lastelëms dalyvis, taðtu daunorubicinas yra 100–300 kartø toksiðkesnis uþ artimo redukcijos potencialo modelinâchinonà dantronà. Ðe skirtojui gali bûti susieti su dideliu daunorubicino lastelës/terpës pasiskirstymo koeficientu (570 ± 40 (HL-60 lastelës), 230 ± 30 (FLK lastelës)), nustatytu fluorescencijos geðinimo metodu. Analogiûkas dantronos parametras yra maþesnis nei 10.